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Fully discretized incompressible Navier—Stokes equations are solved by splitting
the algebraic system with an approximate factorization. This splitting affects the tem-
poral convergence order of velocity and pressure. The splitting error is proportional to
the pressure variable, and a simple analysis shows that the original convergence order
of the time-integration scheme can be retained by solving for incremental pressure.
The combination of splitting and incremental pressure is shown to be equivalentto an
error-correcting method using the full pressure. In numerical experiments employing
a third-order time-integration scheme and various orders for the pressure increment,
the splitting error is shown to control the convergence order, and the full order of the
scheme is recaptured for both velocity and pressure. The difference between perturb-
ing the momentum or the continuity equation is also exploregkoo? Eisevier Science (USA)
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1. INTRODUCTION

The Navier—Stokes equations for an incompressible Newtonian fluid are

0
87?+(u.v)u=—Vp+vAu~l—f, 1)

V.u=0, 2

where the velocity = u(x, t) varies over the open domaia € RY (d is 2 or 3), and is

an external force. The scalar figfdrepresents the pressure divided by the density, and tt
constanv is the kinematic viscosity. At = t; initial values are assumed(x, to) = ug and
p(x, t) = po, whereup and pg satisfy Egs. (1) and (2) and the boundary conditions.
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We only consider Dirichlet conditions (this does not limit the applicability of the algebra
splitting method to other types and combinations of boundary conditions),

u=w forxel, and /W~n=0,
r

wherew is a known function. The pressure is well defined modulo an additive consta
and a requirement like

J.p=e

JQ
is needed for uniqueness.

The algebraic equations obtained when discretizing the problem are often virtually imp
sible to solve directly, and different strategies to reduce the number of central proces:
unit cycles and necessary computer memory have been developed. One possibility
rewrite the partial differential equations (PDES) to separate the variables (pressute al
velocity components). Perhaps the most successful PDE-modifying technique is the prc
tion method based on the work of Chorin [2] and Temam [17] with a Poisson equation
the explicit calculation of the pressure. However, due to the requirements of the underly
Helmholtz—Hodge theorem [13, Sect. 7.2], the projection method in general corrupts
boundary conditions. In certain cases (e.g., when the forces on the boundaries are requ
errors in this area of the domain may have a large impact on the quality of the computat
The problem can be avoided by a clever choice of bondary conditions in the intermed
steps of the projection method (see, e.g., [8]) or by the use of algebraic splitting.

Algebraic splitting as a tool for solving the Navier—Stokes equations was introduced
Dukowicz and Dvinsky [3] and further explored by Perot [11] and Quartesbai. [14].
This technique might be seen as the matrix equivalent of the fractional step or projec
method, and in certain cases the equation systems that are solved are identical; see
It is only concerned with block matrices, and hence can be used with any time-integra
scheme and any method for spatial discretization. Boundary conditions are applied a
the fully coupled equations. Thus, the problems of nonphysical boundary conditions :
numerical boundary layers inherent in the projection method are resolved. It is possibl
a priori control the splitting error; it may, in principle, have any order. This makes algebr:
splitting as accurate as solving the fully coupled equations.

In Refs. [11, 14], the splitting is done by approximate LU factorization. The tempor
order of the splitting error is determined by a (truncated) von Neumann series, wh
approximates the inverse of a block matrix—see Section 4. In [3], a different type of mat
splitting is used, which is limited to second-order accuracy. There, it is suggested 1
higher order methods can be achieved by increasing the order of the pressure increr
The present paper shows that higher order methods can be successfully constructe
combining higher order pressure increments as in [3] and the approximate LU-factoriza
of [14]. This requires far fewer computations than the computing terms of the von Neum:
series, and the presented method is believed to be useful in computational fluid dynan

Also new in this paper is an alternative interpretation of the use of incremental press
Itis shown that it is equivalent to a particular error-correction of the nonincremental sche
and that certain schemes can easily be solved in their nonincremental form and still obtz

higher order. Such a variant of the method may be advantageous since it avoids accumul
rounding errors in the pressure.
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When using a high-order pressure increment, the Schur-complement of the approxin
LU factorization typically involves the mass matrix. In the context of the finite-elemel
method, one wants to lump the mass matrix to increase the computational efficiency. A
seenin Section 4, alumped mass matrix formally reduces the order of the factorization. T
practical detail seems to be overlooked. The reason for this might be, as demonstrate
the numerical examples herein, that the error introduced is much smaller than the split
error and hence does not limit the convergence.

In the next sections the algebraic splitting method and its incremental pressure vers
are presented. We briefly discuss the proper choice of matrix approximations and t
show that solving for incremental pressure reduces the error introduced by the splitti
The results are illustrated numerically by solving the equations with a third-order tim
integration scheme.

2. ALGEBRAIC SPLITTING

We apply some suitable time discretization to the PDE system of Eqgs. (1) and (2). |
t, be thenth point in time, st = t,,1 — ty, andu” ~ u(t,). As an example, the backward
Euler scheme with linearized convection renders the semidiscretized system

Un+l —_u"

at + Vpn+1 — _(uﬂ . V)un+1 + vAUn+l +fn+1’ (3)

vV.u™l=0. (4)

A number of methods may be used for spatial discretization—we focus on the Galer
finite-element method (FEM). Note that if, for example, finite differences are used inste
some of the following discussion becomes irrelevant, as the mass matrix is diagonal in
case. When discretizing Egs. (3) and (4) with FEM, the elements for the velocities and
pressure should be chosen such that the “inf-sup” criterion of mixed FEMs (see, e.g., [
is fulfilled.

The discretized system assumes the form

yn+! rﬂ b8+1
o] = [o]+[ae]
where uppercase letters are used for (block) matrices, and lowercase letters are use
vectors. Bold symbols like"** signify that the entries are vectors, whereas the entries «
p"*+! are scalars:]) contains the external force and the velocity terms from previous tim
steps. Boundary conditions are enforced on the system; the vbgtdr [)B+1]T reflects the
necessary modifications to the right-hand side.

The backward Euler scheme in Egs. (3) and (4) m&kegqual to the sum of the consistent
mass matri¥t 1M, the linearized convection matrk (u"), and the diffusion matrixL.
The right-hand side accounts for everything known at time steql, like st—*Mu" and

boundary conditions. The matricBsandG represent the diffusion and the gradient operator
respectively. These are generally nonsquare.

C G
D O
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The large system can be made somewhat more manageable by block LU factoriza
Following the notation used in [14] we write:

Cc 0
D -DC!G

ﬁn+1 | C—l L‘ln-&-l
'r)n+1 = 0 | pn+1 .

Since p"t! = | p"*1, forward and backward substitution now amounts to the three-ste
procedure

I Cc-1lG
0 |

C G

A=
D O

To solve Eq. (5), we put

1 ca™t = rf 4 b[*t,
2 DC 1G pn+1 Dun+1 + bn+1 (6)
3 Cun+1 — Cun+1 _ Gle-l'

In contrast to the projection methdif;** is not assigned any physical meaning and shouls
be considered a purely computational convenience.

Computing the large and dense mat@ix! is expensive, and an implicit method must
updateC andC~! at every time step. Therefore the consistent oper@®r'G, though
it may have satisfying sparseness, will not be formed in any implementation for lar
problems. One may circumvent the inversiorCaind keep the product in factored form by
applying the Uzawa algorithm or the pressure matrix method (see [15, Chap. 9.6]). Th
techniques introduce extra inner iterations.

Substituting a proper approximation f6r* can reduce the cost of the inner iterations or
obliviate them. Following [14], we introdudd; and H,, two (possibly identical) approxi-
mations ofC~1. Thus, the solution procedure above becomes

1. Ci"™ =r+ b2 (unchangen
2. DHGp"™* = D" + by, @)
3. un+1 n+1 H G pn+1

This system is equivalent to the system obtained by substituting the product of an
approximativel U factorization, as

C CHG
D D(H;—-Hp)G

C 0
D —-DH;G

I H)G
0 I

A~ A= (8)

ChoosingH; = H, gives a solenoidal solution, whilel, = C~* leaves the momentum
equation unaltered. The latter was chosen in [14], and the former in [11]. It is not cle
which alternative is the better; it probably depends on the specific problem. In the followil
both alternatives are examined.

All boundary conditions must be imposed on the original, unfactorized algebraic syst
(5). No auxiliary or unphysical boundary conditions are needed—especially not for 1
pressure.
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3. INCREMENTAL VERSION

A variant of the classical projection method, perhaps going back to Hirt and Cook [
produces the pressure increment, instead of the pressure itself.

An incremental version of the algebraic splitting method is derived by subtractir
[Gp", O]" from both sides of Eq. (5), settirip™t! = p"+! — P", and then introducing the
approximationdH; and H,. Only the solution vector and the right-hand side are change
while the matrixA remains, as in the nonincremental case.

Let §' denote theth-order backward difference operatép"! = §'~1p™+1 — s'~1pn.
This allows us to express the incremental algebraic splitting method of general asler

cC o0 ut | [rfi=Go'p"| b3 ©
D —DH,G = + et |

8' pn+l 0
The vectore'p” = p™1 — §'p"*t1 is computed only from the pressures at previous time
steps. If we defind®p" = p" ando®p" = 0, the above system includes also the nonincre
mental version of the previous section.
Thus, the split three-step procedure above is generalized as

I HxG
o |

1 Ci™! =r"— Go'p" + bt
2. DH;Gs'p™* = D" + by, (10)
3 l/II'H-l — GI’H—l _ HZG(SI pI'H-l.

Remark. Itistheunsplitsystem that is reformulated to solve for the pressure incremer
and then the approximate LU factorization is applied. If one reformulates the split syst
(by subtracting € H,Go' p", D(H, — H1)Go' p"T), the concomitant splitting error will
include an additional term which will be proportional to the full pressure.

4. APPROXIMATIONS TO C!

The choice oH; andH, is essential to the method. We want the approximatioi@to
to be sparse, to be easy to find, and perhaps to allow fast computation of the pid&iyGs
andH,G. Requirements that will makil; andH, converge taC~* whenst — 0 may be
established by examining—? itself.

Let S=C — st~1M, so that

cl=st(l +stM~ g IML, (11)

Using a von Neumann series, this is expanded as

oo
cl=st [Z(—StMls)i ML, (12)
i=0
The convergence criterion of the series is
p(M71S) < st72, (13)

where p(-) is the spectral radius. Sindd and S depend on the space discretization,
Eq. (13) relatest to the largest element diameter
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FIG.1. Convergence intime of different approximationdo®. p(M~1S)~! = 0.013. The dashed lines in the
corner show the inclinations of order 1, 2, and 3.

The matrix)A(((St) is akth-order approximation t&X (5t) in some norm whenever
[X = X| = O@thtY.

Thek first terms of Eq. (12) is &th-order approximation t€ .

To use an approximatior; based on the von Neumann series, one needs to exyre'ss
In the presence of iterative solvers, this is typically done via a pressure matrix method v
H, in lieu of C~1. Considering computational work, it is more attractive to substitute th
lumped mass matri¥, for the consistent mass matiik in Eq. (12). Now, it is feasible to
explicitly form the producD H; G, and for smalk (say,k < 3) the product is likely to have
adequate sparseness. Explicit computation of the product permits the use of general-pul
iterative solvers.

The FEM does not produce a diagonal mass matrix, although as the grid is refir
IM — M| — 0. For any finite gridst M ! is a zeroth-order approximation @, and
the consequences of using lumped massiandH, are not clear. Figure 1 demonstrates the
behavior of four different approximations @* asst — 0. The abscissa iflC~* — H|»

(H denotes the approximation), and the time step is the ordinate. The solid lines, den
Consistent landConsistent 2n the figure legend, correspond to

H=sM"? and H =5t —stMiSML,
respectively, while the dashed lines, dendtedhped landLumped 2are for
H=stM_ " and H=st(l —stM 'S)M ™.

Note that the lines cross fét ~ p(M~1S)~L. The consistent approximations are clearly
first and second order. Using lumped mass, however, the approximations eventually ds
asO(st) (i.e., zeroth order). It is interesting that for lar§fe the lumped approximations

show higher accuracy than do the consistent ones. Whether this is true for other flow ¢
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and different grids as well, we do not yet know, but there is a possibility that one might ge
accuracy by using lumped mass.

The matrices in this experiment are as for the “Kim—Moin” case discussed in Sectior
but the high-order scheme is replaced by linearized backward Euler, andceilgn8ents
are used.

From practical simulations using FEM spatial discretization, we have found that if tl
criterion (13) is fulfilled, spatial errors will dominate the total error. In our small exam
ple (Fig. 1), it is only for this range oft that use of two terms of Eq. (12) results in
higher accuracy—whether lumping mass or not. Thus, using more than the first term se
unreasonable.

In the following, the difference betweevi—* andM_ ! is not considered. Lumped mass
applications are discussed in Section 7 and the computations in Section 8.

5. SPLITTING ERRORS

If the errors introduced by the splitting are of the same order as the errors inher
in the solution of the coupled system, determined by the time-integration scheme, t
[u™?, p"1T computed by (10) converge in time as fast as if computed by (6).

The perturbation due to the approximate LU factorization (the splitting) is

[0 Enm
o E|

En= (C H, — |)G and E. = D(H; — Hl)G

C CHG
D D(H;—-Hp)G

C G
D O

E=A—A:l

where

To simplify the notation in this section, write the system (6)/A@s= b and the split
system (10) ad\k = b. N

For the purpose of finding the time convergence order, we may réard as known
and write the system at time stapt+ 1 as

E..é n+1
AR —b=_Ex=_| ™P | (14)

—

EC(S pn+l

Errors at previous time steps are disregarded; héneeb. Note the importance of the
pressure (increment) variable on the splitting error. It can be reduced by diminishing
pressure variable.
Using the sensitivity analysis of Ref. [4, Sect. 2.7], it follows that the relative splittin
error is
X = xII lefll

< k(A .
xi = Ap

Here,x (A) is the condition number oA, andef is the perturbatiorEX such thatk is a
power ofst.

For akth-order time-integration method, we wani= §t*. (We do not need = §t*+*
since the block matri€ incorporates a factat —1.) We look at two special cases related to
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methods presented in [11, 14], respectively. In case 1 welget H, = §tM~1; in case 2
we setH; = stM—tandH, = C L.

Case 1. We haveE; =0, and E, = §tSM~1G. The splitting (10) gives rise to a
perturbation

EX =

5tsm—1GaAp“+11
. .

It follows from Taylor's theorem that' p™+* ~ st' (8 p/at")l,,,, and we may write
IEX| < 8t | SMT'G].

The numbera depends orp' p/8t'|tn+l. In fact, since derivatives are bounded in any
meaningful incompressible flows may be considered constant. The mat&xepends

onau"t1/ax when the chosen time-integration scheme uses linearized convection. Ag:
itis reasonable to assume that an upper bound exists. We arrive at the following proposi

PROPOSITIONS.1. If H; = H, = §tM~1, there exists a numbe¥1, depending only on
the boundary conditions and the spatial discretization such that

X — x|

< 3t|+l./\/l1.
X1l

The relative splitting error of (10), introduced when stepping frote n + 1, is thus
o(st'+.

Case 2. We haveE,, = 0 andE. = D(C~! — stM~1)G, and so the perturbation in this
case is

0

ER = |
D(C! — stM-1)G§l pn+t

(15)

Considering the von Neumann serieg®of! (12), it is clear that
E. = 8t2DMISM1G + O(5t3).

In actual computationét is restricted to an interval. On this interval, the von Neumant

series may not converge. Then the order of vanishing.a$ less than 2 but greater than 1.
It is possible to bound C~1||. Indeed,||C~!| < c||S7}|| for large t, and |C7Y| <

cst||M~L|| for smallst, with ¢ being a suitable constant. Restricting our attentiait ter 1,

we have

ICTH < c(IM~H + 1S7HD.

The other matrices involved in (15) are easily bounded, and by arguing as for case 1 ab
we conclude:
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PROPOSITIONS.2. If H; = §tM~tand H, = C~1, there exists a numbe¥1, depending
only on boundary conditions and the spatial discretization such that

X = x|

X <8t M, 1< y <2

The numbel depends on the distance betwgemnd p(M~1S)~L.

The splitting error in this case ©(5t'+?) (the O-notation involves the limist — 0).
When the time step is not sufficiently small, one will observe convergence rates at redu
order.

This analysis indicates that if other factors are kept equal, case 2 would show the fa
convergence. But the analysis does not state anything about the nuthexrsd M-, or
how closey is to 2, and so cannot be used to conclude that either case should be gene
preferred to the other. In the eyes of the authors, the most interesting result is that by sol
for an adequately high-order backward difference pressure, the full time convergence of
unsplit scheme can be recaptured.

6. AN ALTERNATIVE APPROACH

The same increase in accuracy can also be obtawitbabut solving for the pressure
increment: Simply addG H,Ga' p", D(H, — H1)Go' p"]™ to both sides of Eq. (9). Such
a scheme is actually an example of a general technique—first make an approximation,
then compensate for the error. The following discussion takes this view and sheds a diffe
light on approximate LU factorizations.

As shown in Section 5, the algebraic splitting perturbs the equations into

utt g [BE [Emp™?
pn+1 - 0 + brg—&-l o Ec pn+1 :
With a good guess fop"*!, we can add a term to the right-hand side to compensate f

the splitting error. The guess might be found from extrapolation of former pressure vall
by a difference formulap™! ~ ¢'p" = p"t! — §' p"*1. The error-corrected equations

become
n+1 rn bn+1 E 5I n—+1
un+1 =]t §+1 - | pn+1 ’ (16)
p 0 by E.d'p
the same equations as (14), which we got by applying algebraic splitting to an increme

scheme.
The system (16) is equivalent to

C G
D O

C G
D O

1. CO™?t =1l + Epo’ p" + b7,
2. DH;Gp™™ = DO™! — Eco' p" + b]H, 17)
3 un+1 — 0n+1 — H,G pn+1'

Settingd™! = ™! — H,Go'p", we get back procedure (10). ComputatiorEgf and E.
makes procedure (17) more expensive than procedure (10). The most preferable situ:
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is like case 1 aboveE; = 0, and sinceH; is diagonal, only two matrix-vector products are
required for evaluating the correction term. Stability properties of (17) may be prefera
since the pressure does not accumulate round-off errors.

7. ATHIRD-ORDER SCHEME

To illustrate the effect of using incremental pressure, in the next section we solve the ec
tions fors' p"*,1 = 0, 1, and 2 for both case 1 and case 2. To observe the splitting err
we then need a time-integration scheme which is at least as accurate and for this purpos
introduce a third-order semiimplicit scheme based on the backward differentiation form
(BDF) combined with a linearization of the convection term. Application of this type c
schemes to the Navier—Stokes equations is examined by Peyret [12].

The differential equatiodu/at = f (u) is interpolated according to

tlzaun+lj f(un+l) (18)
with
_11a_18a_9 anda—2
30—6, 1= " 2T g 8= "5

Before applying Eg. (18) to the momentum equation, the convection term is linearized
a third-order extrapolation:

U™t vyumt & F - vu™t = (@Bu" = 3u™ + u"?) - vyut
This yields the semidiscretized system

12u™?t — 180" + 9u™1 — 2un-—2
65t

+ vpn+1 — _(u* . V)un+1 + vAuﬂ-ﬁ-l’
v.-u"t =0

Use of the approximate algebraic splitting method with = H, = (6/11)8tML‘1
(case 1) and pressure incremental form gives the procedure

1. Ci"™ =r) - Go'p" + b,
2 1618tDM 1gs pn+1 D™ 4 b?;rl’ (19)
3. uMtt =gt — E3t|\/|L—1c;5' p"t,
11
where
rh 31tM<168 2u”1+2u“1> and C—%M+K(u)+vL

This choice of matrix approximations follows [11] and produces a weakly solenoic
solution.
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It should be mentioned that procedure (19) wita 0O, 1, 2 resembles the procedures
suggested by Gresho and Chan [5] calRmdjection 1 Projection 2 and Projection 3
Besides using a first-order time integration, the main difference is a fM:M[‘1 in front
of the pressure term in step 1 of (19). Gresho and Chan experienced stability problems
the incremental versions, also when omitting the fatdvi L‘l, and we suspect it is caused
by using equal-order finite elements for pressure and velocity. Guermond and Quartay
[6] examined the stability for a (continuous) projection method and found that, while tl
nonincremental scheme is stable for equal-order elements (and sufficiently large time ste
elements fulfilling the inf—sup condition is required to make the incremental scheme stal

The other case we examine is the same time method With= C~! and H; =
(6/11)5tM* (case 2). This choice is equivalent to what is called the Yosida method
Quarteroniet al. [14] and changes the discrete continuity equation, while the momentu
equation remains unaltered. Writing the equations with incremental pressure we get

1. Ci™ =r) — Go'p" +b*1,

6
2 1—18tDM,_‘165' p"tt = DUt 4 byt (20)
3 Cun+1 — CUn+1 _ GS' pn+1

wherer]} andC are as for case 1.

8. NUMERICAL EXPERIMENTS

For the study of temporal convergence of the splitting error, we chose two test problel
The first is a version of the “Kim—Moin problem” [9] that was used in [14], and the secor
is lid-driven cavity flow.

The two dimensional Kim—Moin problem has the time-dependent solution

Uy = —coS27X) sin(2ry)e &, (21)
U, = Sin(27X) cog2ry)e 87t (22)
p= —%(cos(4nx) + cog4ry))e Lo m (23)

over the domaif2 = (0.25, 1.25) x (0.5, 1.5), t € (0, 1]. Only the Dirichlet problem was
considered, and boundary valugsare immediate from (21) and (23). Both interior and
boundary degrees of freedom were kept in the system, and the Dirichlet conditions
enforced on the system before solving. No boundary conditions were set on the press
except at one point (0.25; 0.5) whepgt) = 0. The time ste@t was varied from 22 to
279 and we used a structured grid of’&juare elements: nine- and four-node Lagrangial
elements for the velocity and pressure, respectively, which is known as a low-order Tayl
Hood element pair (cf. [15]).

An object-oriented computer program was implemented using the C++ library Diffpa
[10]. The main classes were a simulator class, which handled the time stepping, a velo
class for steps one and three of the above procedures, and a pressure class for stej
Gridding, finite-element assembly, matrix algebra, preconditioning, and solution of line
equations were performed by routines from the library. All linear equations were solv
with the Krylov method “BiCGStab” [16], which can be used for nonsymmetric matrice:
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Incomplete LU factorization was used for the preconditioners. The convergence criter
was||r"||/|Ibll < 10-8, where the norm is the Cartesian northis the residual after thath
iteration, and is the righthand-side vector. The computationally most expensive operati
was the solution of the Poisson-like pressure equation; 50—74 iterations were neede
satisfy the convergence criterion. Also, the computatioP Bf,DT (DT = G) took several
minutes on our computer (Sun Sparc), but this product depends only on the grid and
performed once in a preprocessing stage. When the systemis large (small elements), for
the productD H, DT is not feasible and one will have to use an iterative method combine
with a suitable preconditioner.

Errors were measured by the norms

lleull = mnax||u" —undt)|lLz(), (24)

llepll = rms|ip" — p(Ndt) [l 2, (25)

where rmg denotes the root mean square.

To examine the effect of the splitting error and the use of incremental pressure,
employed the BDF scheme of Section 7, since this time integration has sufficiently h
order. We tried both case 1 and case 2 to see if there is any noticable difference betv
modifying the momentum equation and modifying the continuity equation.

The plots that follow show velocity and pressure errors, Egs. (24) and (25), as functi
of 5t. A dotted, straight line is included in the left corners for reference on the converger
order.

Figures 2, 3, and 4 refer to case 1, witl: 0, 1, 2. Both pressure and velocity errors are
close to the theoretical order of convergence. In Figs. 3 and 4, we see the effect of the s
error; the pressure error reaches its minimum at ab8ut8.0~° and become®(1). Close
to 2.3 x 107 the velocity error also reaches its minimum.

The only parameter that is varied in these plots is the order of the pressure inckeme
Thus the three plots confirm that the splitting error is indeed proportiorsaptg 2.

In [11], Crank—Nicholson time integration with nonincremental algebraic splitting give
second order for the velocity and first order for the pressure. It is stated that due to lim
tions in the discrete representation of the continuous pressure equation, the discrete pre

10 T T T T y
3 —¥— Velocity Error
-G Pressure Error |]

107k,

Errors

-3

0 . ) L ) ) .

0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.002
&t

1

FIG. 2. Kim—Moin problem, case 1,= 0.
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—¥ Velocity Error
4 -3 Pressure Error

Errors

-6
10 . . . . . .
0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.002
5t

FIG. 3. Kim—Moin problem, case 1,= 1.

will always be first-order accurate. The present study demonstrates that this is overcom
the use of incremental pressure. Third-order convergence of both velocity and pressur
shown in Fig. 4, was previously obtained in [1]. In that study, second-order pressure inc
ment and BDF time-integration are used with a projection method (modifies the continuc
PDE). Spatial discretization is handled using a spectral method, and spatial errors are &
level of the machine precision.

Figures 5, 6, and 7 refer to case 2 for the Kim—Moin flow. With nonincremental pressu
the convergence orders of velocity and pressure are close to 1.8 and 1.3, respecti
With | = 1 (i.e., first-order pressure increment), we observe a convergence order of
for velocity (regarding only the first five values &) and a convergence order of 2.4 for
pressure (first three values é&ff). With | = 2 (see Fig. 7), the steepest parts of the graph
indicate the orders 3.8 and 3.4.

Compared to case 1, the velocity in case 2 converges faster and has higher accurac
all values ofl.

10 T T T T

[ —%— Velocity Error
-3 Pressure Error

—6
1 . e . . . .
%.1 25 0.0625 0.0313 0.0156 0.0078 0.0039 0.002

FIG. 4. Kim-Moin problem, case 1,= 2.
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FIG.5. Kim-Moin problem, case 2,= 0.
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FIG. 6. Kim—Moin problem, case 2,= 1.
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FIG. 7. Kim-Moin problem, case 2,= 2.



452 HENRIKSEN AND HOLMEN
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FIG. 8. Cavity flow, case 1, = 2.

In the two-dimensional cavity problem, we used a unit box in which the lid started
rest and then was accelerated. This was done both to get a time-dependent problen
to avoid any possible problems with the inital values. The velocity function of the li
was

t/0)*

tT o

wherer = 0.6 andt € (0, 1]. Taylor—Hood elements (64quare) were used for discretizing
this problem in space. A reference solution was obtained by running the same numel
method with a much smaller time stejp,= 5 x 1074,

The splitting errors for case 1 and case 2 With 2 are plotted in Figs. 8 and 9. Again, the
convergence rates for both pressure and velocity have the same order as the time-integr
scheme()(6t%). For this problem, however, case 1 gives higher accuracy than case 2. 1
same was observed fbe= 1 andl = 0.
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£ —— Velocity Error
-3 Pressure Error

Errors

10°F
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0.1 0.05 0025 00125 00063  0.0031
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FIG. 9. Cavity flow, case 2, = 2.
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9. SUMMARY

Solving for incremental pressure, or correcting splitting errors, is a viable way to achie
higher order algebraic splitting methods. The Kim—Moin problem and the lid-driven cavi
were used to test the effect of increasing the order of the pressure increment. Itis clear
the analysis and the numerical experiments that the splitting error (in time) is proportio
to the pressure variable. Use of pressure increments are thus an alternative—and chi
in terms of computational work—to the use of high-order matrix factorizations (see [11

Two special cases of approximate factorizations were examined. They correspon
methods previously proposed by Perot [11] and Quartezbal.[14]. The method of the
latter, which does not enforce mass conservation, has a somewhat faster time converg
but is not necessarily the most accurate on a specific range of time steps; this is indic
by both analysis and numerical experiments.
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