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Fully discretized incompressible Navier–Stokes equations are solved by splitting
the algebraic system with an approximate factorization. This splitting affects the tem-
poral convergence order of velocity and pressure. The splitting error is proportional to
the pressure variable, and a simple analysis shows that the original convergence order
of the time-integration scheme can be retained by solving for incremental pressure.
The combination of splitting and incremental pressure is shown to be equivalent to an
error-correcting method using the full pressure. In numerical experiments employing
a third-order time-integration scheme and various orders for the pressure increment,
the splitting error is shown to control the convergence order, and the full order of the
scheme is recaptured for both velocity and pressure. The difference between perturb-
ing the momentum or the continuity equation is also explored.c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The Navier–Stokes equations for an incompressible Newtonian fluid are

∂u
∂t
+ (u · ∇)u = −∇ p+ ν1u+ f, (1)

∇ · u = 0, (2)

where the velocityu = u(x, t) varies over the open domainÄ ∈ Rd (d is 2 or 3), andf is
an external force. The scalar fieldp represents the pressure divided by the density, and the
constantν is the kinematic viscosity. Att = t0 initial values are assumed;u(x, t0) = u0 and
p(x, t) = p0, whereu0 and p0 satisfy Eqs. (1) and (2) and the boundary conditions.
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We only consider Dirichlet conditions (this does not limit the applicability of the algebraic
splitting method to other types and combinations of boundary conditions),

u = w for x ∈ 0, and
∫
0

w · n = 0,

wherew is a known function. The pressure is well defined modulo an additive constant,
and a requirement like ∫

Ä

p = 0

is needed for uniqueness.
The algebraic equations obtained when discretizing the problem are often virtually impos-

sible to solve directly, and different strategies to reduce the number of central processing
unit cycles and necessary computer memory have been developed. One possibility is to
rewrite the partial differential equations (PDEs) to separate the variables (pressure andd
velocity components). Perhaps the most successful PDE-modifying technique is the projec-
tion method based on the work of Chorin [2] and Temam [17] with a Poisson equation for
the explicit calculation of the pressure. However, due to the requirements of the underlying
Helmholtz–Hodge theorem [13, Sect. 7.2], the projection method in general corrupts the
boundary conditions. In certain cases (e.g., when the forces on the boundaries are required),
errors in this area of the domain may have a large impact on the quality of the computation.
The problem can be avoided by a clever choice of bondary conditions in the intermediate
steps of the projection method (see, e.g., [8]) or by the use of algebraic splitting.

Algebraic splitting as a tool for solving the Navier–Stokes equations was introduced by
Dukowicz and Dvinsky [3] and further explored by Perot [11] and Quarteroniet al. [14].
This technique might be seen as the matrix equivalent of the fractional step or projection
method, and in certain cases the equation systems that are solved are identical; see [14].
It is only concerned with block matrices, and hence can be used with any time-integration
scheme and any method for spatial discretization. Boundary conditions are applied as for
the fully coupled equations. Thus, the problems of nonphysical boundary conditions and
numerical boundary layers inherent in the projection method are resolved. It is possible to
a priori control the splitting error; it may, in principle, have any order. This makes algebraic
splitting as accurate as solving the fully coupled equations.

In Refs. [11, 14], the splitting is done by approximate LU factorization. The temporal
order of the splitting error is determined by a (truncated) von Neumann series, which
approximates the inverse of a block matrix—see Section 4. In [3], a different type of matrix
splitting is used, which is limited to second-order accuracy. There, it is suggested that
higher order methods can be achieved by increasing the order of the pressure increment.
The present paper shows that higher order methods can be successfully constructed by
combining higher order pressure increments as in [3] and the approximate LU-factorization
of [14]. This requires far fewer computations than the computing terms of the von Neumann
series, and the presented method is believed to be useful in computational fluid dynamics.

Also new in this paper is an alternative interpretation of the use of incremental pressure.
It is shown that it is equivalent to a particular error-correction of the nonincremental scheme
and that certain schemes can easily be solved in their nonincremental form and still obtain a
higher order. Such a variant of the method may be advantageous since it avoids accumulating
rounding errors in the pressure.
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When using a high-order pressure increment, the Schur-complement of the approximate
LU factorization typically involves the mass matrix. In the context of the finite-element
method, one wants to lump the mass matrix to increase the computational efficiency. As is
seen in Section 4, a lumped mass matrix formally reduces the order of the factorization. This
practical detail seems to be overlooked. The reason for this might be, as demonstrated in
the numerical examples herein, that the error introduced is much smaller than the splitting
error and hence does not limit the convergence.

In the next sections the algebraic splitting method and its incremental pressure versions
are presented. We briefly discuss the proper choice of matrix approximations and then
show that solving for incremental pressure reduces the error introduced by the splitting.
The results are illustrated numerically by solving the equations with a third-order time-
integration scheme.

2. ALGEBRAIC SPLITTING

We apply some suitable time discretization to the PDE system of Eqs. (1) and (2). Let
tn be thenth point in time,δt = tn+1− tn, andun ≈ u(tn). As an example, the backward
Euler scheme with linearized convection renders the semidiscretized system

un+1− un

δt
+∇ pn+1 = −(un · ∇)un+1+ ν1un+1+ f n+1, (3)

∇ · un+1 = 0. (4)

A number of methods may be used for spatial discretization—we focus on the Galerkin
finite-element method (FEM). Note that if, for example, finite differences are used instead,
some of the following discussion becomes irrelevant, as the mass matrix is diagonal in that
case. When discretizing Eqs. (3) and (4) with FEM, the elements for the velocities and the
pressure should be chosen such that the “inf–sup” criterion of mixed FEMs (see, e.g., [15])
is fulfilled.

The discretized system assumes the form

[
C G

D 0

][
un+1

pn+1

]
=
[

r n
u

0

]
+
[

bn+1
u

bn+1
p

]
, (5)

where uppercase letters are used for (block) matrices, and lowercase letters are used for
vectors. Bold symbols likeun+1 signify that the entries are vectors, whereas the entries of
pn+1 are scalars.rn

u contains the external force and the velocity terms from previous time
steps. Boundary conditions are enforced on the system; the vector [bn+1

u , bn+1
p ]T reflects the

necessary modifications to the right-hand side.
The backward Euler scheme in Eqs. (3) and (4) makesC equal to the sum of the consistent

mass matrixδt−1M , the linearized convection matrixK (un), and the diffusion matrixνL.
The right-hand side accounts for everything known at time stepn+ 1, like δt−1Mun and
boundary conditions. The matricesD andG represent the diffusion and the gradient operator,
respectively. These are generally nonsquare.
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The large system can be made somewhat more manageable by block LU factorization.
Following the notation used in [14] we write:

A =
[

C G

D 0

]
=
[

C 0

D −DC−1G

][
I C−1G

0 I

]
.

To solve Eq. (5), we put [
ũn+1

p̃n+1

]
=
[

I C−1

0 I

][
un+1

pn+1

]
.

Since pn+1 = I p̃n+1, forward and backward substitution now amounts to the three-step
procedure

1. Cũn+1 = rn
u + bn+1

u ,

2. DC−1Gpn+1 = Dũn+1+ bn+1
p , (6)

3. Cun+1 = Cũn+1− Gpn+1.

In contrast to the projection method,ũn+1 is not assigned any physical meaning and should
be considered a purely computational convenience.

Computing the large and dense matrixC−1 is expensive, and an implicit method must
updateC andC−1 at every time step. Therefore the consistent operatorDC−1G, though
it may have satisfying sparseness, will not be formed in any implementation for large
problems. One may circumvent the inversion ofCand keep the product in factored form by
applying the Uzawa algorithm or the pressure matrix method (see [15, Chap. 9.6]). These
techniques introduce extra inner iterations.

Substituting a proper approximation forC−1 can reduce the cost of the inner iterations or
obliviate them. Following [14], we introduceH1 andH2, two (possibly identical) approxi-
mations ofC−1. Thus, the solution procedure above becomes

1. Cũn+1 = r n
u + bn+1

u (unchanged),

2. DH1Gpn+1 = Dũn+1+ bn+1
p , (7)

3. un+1 = ũn+1− H2Gpn+1.

This system is equivalent to the system obtained by substituting forA the product of an
approximativeLU factorization, as

A ≈ Â =
[

C C H2G

D D(H2− H1)G

]
=
[

C 0

D −DH1G

][
I H2G

0 I

]
. (8)

ChoosingH1= H2 gives a solenoidal solution, whileH2 = C−1 leaves the momentum
equation unaltered. The latter was chosen in [14], and the former in [11]. It is not clear
which alternative is the better; it probably depends on the specific problem. In the following,
both alternatives are examined.

All boundary conditions must be imposed on the original, unfactorized algebraic system
(5). No auxiliary or unphysical boundary conditions are needed—especially not for the
pressure.
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3. INCREMENTAL VERSION

A variant of the classical projection method, perhaps going back to Hirt and Cook [7],
produces the pressure increment, instead of the pressure itself.

An incremental version of the algebraic splitting method is derived by subtracting
[Gpn, 0]T from both sides of Eq. (5), settingδpn+1 = pn+1− Pn, and then introducing the
approximationsH1 andH2. Only the solution vector and the right-hand side are changed,
while the matrixÂ remains, as in the nonincremental case.

Let δl denote thel th-order backward difference operator,δlpn+1 = δl−1 pn+1− δl−1 pn.
This allows us to express the incremental algebraic splitting method of general orderl as[

C 0
D −DH1G

][
I H2G

0 I

][
un+1

δl pn+1

]
=
[

rn
u − Gσ l pn

0

]
+
[

bn+1
u

bn+1
p

]
. (9)

The vectorσ lpn = pn+1− δlpn+1 is computed only from the pressures at previous time
steps. If we defineδ0 pn = pn andσ 0 pn = 0, the above system includes also the nonincre-
mental version of the previous section.

Thus, the split three-step procedure above is generalized as

1. Cũn+1 = rn
u − Gσ l pn + bn+1

u ,

2. DH1Gδl pn+1 = Dũn+1+ bn+1
p , (10)

3. un+1 = ũn+1− H2Gδl pn+1.

Remark. It is theunsplitsystem that is reformulated to solve for the pressure increment,
and then the approximate LU factorization is applied. If one reformulates the split system
(by subtracting [C H2Gσ l pn, D(H2− H1)Gσ l pn]T), the concomitant splitting error will
include an additional term which will be proportional to the full pressure.

4. APPROXIMATIONS TO C−1

The choice ofH1 andH2 is essential to the method. We want the approximations toC−1

to be sparse, to be easy to find, and perhaps to allow fast computation of the productsDH1G
andH2G. Requirements that will makeH1 andH2 converge toC−1 whenδt → 0 may be
established by examiningC−1 itself.

Let S= C − δt−1M , so that

C−1 = δt (I + δt M−1S)−1M−1. (11)

Using a von Neumann series, this is expanded as

C−1 = δt
[ ∞∑

i=0

(−δt M−1S)i
]

M−1. (12)

The convergence criterion of the series is

ρ(M−1S) < δt−1, (13)

whereρ(·) is the spectral radius. SinceM and S depend on the space discretization,
Eq. (13) relatesδt to the largest element diameterh.
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FIG. 1. Convergence in time of different approximation toC−1. ρ(M−1S)−1 = 0.013. The dashed lines in the
corner show the inclinations of order 1, 2, and 3.

The matrixX̂(δt) is akth-order approximation toX(δt) in some norm whenever

‖X − X̂‖ = O(δtk+1).

Thek first terms of Eq. (12) is akth-order approximation toC−1.
To use an approximationH1 based on the von Neumann series, one needs to expressM−1.

In the presence of iterative solvers, this is typically done via a pressure matrix method with
H1 in lieu of C−1. Considering computational work, it is more attractive to substitute the
lumped mass matrixML for the consistent mass matrixM in Eq. (12). Now, it is feasible to
explicitly form the productDH1G, and for smallk (say,k ≤ 3) the product is likely to have
adequate sparseness. Explicit computation of the product permits the use of general-purpose
iterative solvers.

The FEM does not produce a diagonal mass matrix, although as the grid is refined,
‖M − ML‖ → 0. For any finite grid,δt M−1

L is a zeroth-order approximation toC−1, and
the consequences of using lumped mass inH1 andH2 are not clear. Figure 1 demonstrates the
behavior of four different approximations toC−1 asδt → 0. The abscissa is‖C−1− H‖2
(H denotes the approximation), and the time step is the ordinate. The solid lines, denoted
Consistent 1andConsistent 2in the figure legend, correspond to

H = δt M−1 and H = δt (I − δt M−1S)M−1,

respectively, while the dashed lines, denotedLumped 1andLumped 2, are for

H = δt M−1
L and H = δt(I − δt M−1

L S
)
M−1

L .

Note that the lines cross forδt ≈ ρ(M−1S)−1. The consistent approximations are clearly
first and second order. Using lumped mass, however, the approximations eventually decay
asO(δt) (i.e., zeroth order). It is interesting that for largeδt , the lumped approximations
show higher accuracy than do the consistent ones. Whether this is true for other flow cases
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and different grids as well, we do not yet know, but there is a possibility that one might gain
accuracy by using lumped mass.

The matrices in this experiment are as for the “Kim–Moin” case discussed in Section 8,
but the high-order scheme is replaced by linearized backward Euler, and only 82 elements
are used.

From practical simulations using FEM spatial discretization, we have found that if the
criterion (13) is fulfilled, spatial errors will dominate the total error. In our small exam-
ple (Fig. 1), it is only for this range ofδt that use of two terms of Eq. (12) results in
higher accuracy—whether lumping mass or not. Thus, using more than the first term seems
unreasonable.

In the following, the difference betweenM−1 andM−1
L is not considered. Lumped mass

applications are discussed in Section 7 and the computations in Section 8.

5. SPLITTING ERRORS

If the errors introduced by the splitting are of the same order as the errors inherent
in the solution of the coupled system, determined by the time-integration scheme, then
[un+1, pn+1]T computed by (10) converge in time as fast as if computed by (6).

The perturbation due to the approximate LU factorization (the splitting) is

E = Â− A =
[

C C H2G

D D(H2− H1)G

]
−
[

C G

D 0

]
=
[

0 Em

0 Ec

]
,

where

Em = (C H2− I )G and Ec = D(H2− H1)G.

To simplify the notation in this section, write the system (6) asAx = b and the split
system (10) aŝAx̂ = b̂.

For the purpose of finding the time convergence order, we may regardδ̂lpn+1 as known
and write the system at time stepn+ 1 as

Ax̂ − b = −Ex̂ = −
 Emδ̂l pn+1

Ecδ̂l pn+1

 . (14)

Errors at previous time steps are disregarded; henceb̂ = b. Note the importance of the
pressure (increment) variable on the splitting error. It can be reduced by diminishing the
pressure variable.

Using the sensitivity analysis of Ref. [4, Sect. 2.7], it follows that the relative splitting
error is

‖x̂ − x‖
‖x‖ ≤ κ(A)‖ε f ‖

‖b‖ .

Here,κ(A) is the condition number ofA, andε f is the perturbationEx̂ such thatε is a
power ofδt .

For akth-order time-integration method, we wantε = δtk. (We do not needε = δtk+1

since the block matrixC incorporates a factorδt−1.) We look at two special cases related to
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methods presented in [11, 14], respectively. In case 1 we setH1 = H2 = δt M−1; in case 2
we setH1 = δt M−1 andH2 = C−1.

Case 1. We haveEc = 0, and Em = δt SM−1G. The splitting (10) gives rise to a
perturbation

Ex̂ =
[
δt SM−1Gδ̂l pn+1

0

]
.

It follows from Taylor’s theorem thatδl pn+1 ≈ δt l (∂ l p/∂t l )|tn+1, and we may write

‖Ex̂‖ ≤ δt l+1α‖SM−1G‖.

The numberα depends on∂ l p/∂t l |tn+1. In fact, since derivatives are bounded in any
meaningful incompressible flow,α may be considered constant. The matrixS depends
on ∂un+1/∂x when the chosen time-integration scheme uses linearized convection. Again,
it is reasonable to assume that an upper bound exists. We arrive at the following proposition.

PROPOSITION5.1. If H1 = H2 = δt M−1, there exists a numberM1 depending only on
the boundary conditions and the spatial discretization such that

‖x̂ − x‖
‖x‖ ≤ δt l+1M1.

The relative splitting error of (10), introduced when stepping fromn to n+ 1, is thus
O(δt l+1).

Case 2. We haveEm = 0 andEc = D(C−1− δt M−1)G, and so the perturbation in this
case is

Ex̂ =
[

0

D(C−1− δt M−1)Gδ̂l pn+1

]
. (15)

Considering the von Neumann series ofC−1 (12), it is clear that

Ec = δt2DM−1SM−1G+O(δt3).

In actual computationsδt is restricted to an interval. On this interval, the von Neumann
series may not converge. Then the order of vanishing ofEc is less than 2 but greater than 1.

It is possible to bound‖C−1‖. Indeed,‖C−1‖ ≤ c‖S−1‖ for large δt , and ‖C−1‖ ≤
cδt‖M−1‖ for smallδt , with c being a suitable constant. Restricting our attention toδt < 1,
we have

‖C−1‖ ≤ c(‖M−1‖ + ‖S−1‖).

The other matrices involved in (15) are easily bounded, and by arguing as for case 1 above,
we conclude:
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PROPOSITION5.2. If H1 = δt M−1 and H2 = C−1, there exists a numberM2 depending
only on boundary conditions and the spatial discretization such that

‖x̂ − x‖
‖x‖ ≤ δt l+γM2, 1< γ ≤ 2.

The numberγ depends on the distance betweenδt andρ(M−1S)−1.

The splitting error in this case isO(δt l+2) (theO-notation involves the limitδt → 0).
When the time step is not sufficiently small, one will observe convergence rates at reduced
order.

This analysis indicates that if other factors are kept equal, case 2 would show the faster
convergence. But the analysis does not state anything about the numbersM1 andM2, or
how closeγ is to 2, and so cannot be used to conclude that either case should be generally
preferred to the other. In the eyes of the authors, the most interesting result is that by solving
for an adequately high-order backward difference pressure, the full time convergence of the
unsplit scheme can be recaptured.

6. AN ALTERNATIVE APPROACH

The same increase in accuracy can also be obtainedwithout solving for the pressure
increment: Simply add [C H2Gσ l pn, D(H2− H1)Gσ l pn]T to both sides of Eq. (9). Such
a scheme is actually an example of a general technique—first make an approximation, and
then compensate for the error. The following discussion takes this view and sheds a different
light on approximate LU factorizations.

As shown in Section 5, the algebraic splitting perturbs the equations into[
C G

D 0

][
un+1

pn+1

]
=
[

rn
u

0

]
+
[

bn+1
u

bn+1
p

]
−
[

Em pn+1

Ec pn+1

]
.

With a good guess forpn+1, we can add a term to the right-hand side to compensate for
the splitting error. The guess might be found from extrapolation of former pressure values
by a difference formula:pn+1 ≈ σ l pn = pn+1− δl pn+1. The error-corrected equations
become [

C G

D 0

][
un+1

pn+1

]
=
[

rn
u

0

]
+
[

bn+1
u

bn+1
p

]
−
[

Em δ
l pn+1

Ec δ
l pn+1

]
, (16)

the same equations as (14), which we got by applying algebraic splitting to an incremental
scheme.

The system (16) is equivalent to

1. Cûn+1 = rn
u + Emσ

l pn + bn+1
u ,

2. DH1Gpn+1 = Dûn+1− Ecσ
l pn + bn+1

p , (17)

3. un+1 = ûn+1− H2Gpn+1.

Settingûn+1 = ũn+1− H2Gσ lpn, we get back procedure (10). Computation ofEm andEc

makes procedure (17) more expensive than procedure (10). The most preferable situation
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is like case 1 above:Ec = 0, and sinceH2 is diagonal, only two matrix-vector products are
required for evaluating the correction term. Stability properties of (17) may be preferable
since the pressure does not accumulate round-off errors.

7. A THIRD-ORDER SCHEME

To illustrate the effect of using incremental pressure, in the next section we solve the equa-
tions forδl pn+1, l = 0, 1, and 2 for both case 1 and case 2. To observe the splitting error,
we then need a time-integration scheme which is at least as accurate and for this purpose we
introduce a third-order semiimplicit scheme based on the backward differentiation formula
(BDF) combined with a linearization of the convection term. Application of this type of
schemes to the Navier–Stokes equations is examined by Peyret [12].

The differential equation∂u/∂t = f (u) is interpolated according to

δt−1
3∑

j=0

aj u
n+1− j = f (un+1), (18)

with

a0 = 11

6
, a1 = −18

6
, a2 = 9

6
, and a3 = −2

6
.

Before applying Eq. (18) to the momentum equation, the convection term is linearized by
a third-order extrapolation:

(un+1 · ∇)un+1 ≈ (u∗ · ∇)un+1 = ((3un − 3un−1+ un−2) · ∇)un+1.

This yields the semidiscretized system

11un+1− 18un + 9un−1− 2un−2

6δt
+∇ pn+1 = −(u∗ · ∇)un+1+ ν1un+1,

∇ · un+1 = 0.

Use of the approximate algebraic splitting method withH1 = H2 = (6/11)δt M−1
L

(case 1) and pressure incremental form gives the procedure

1. Cũn+1 = rn
u − Gσ l pn + bn+1

u ,

2.
6

11
δt DM−1

L Gδl pn+1 = Dũn+1+ bn+1
p , (19)

3. un+1 = ũn+1− 6

11
δt M−1

L Gδl pn+1,

where

rn
u =

1

δt
M

(
18

6
un − 9

6
un−1+ 2

6
un−1

)
and C = 11

6δt
M + K (u∗)+ νL .

This choice of matrix approximations follows [11] and produces a weakly solenoidal
solution.
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It should be mentioned that procedure (19) withl = 0, 1, 2 resembles the procedures
suggested by Gresho and Chan [5] calledProjection 1, Projection 2, andProjection 3.
Besides using a first-order time integration, the main difference is a factorM M−1

L in front
of the pressure term in step 1 of (19). Gresho and Chan experienced stability problems for
the incremental versions, also when omitting the factorM M−1

L , and we suspect it is caused
by using equal-order finite elements for pressure and velocity. Guermond and Quartapelle
[6] examined the stability for a (continuous) projection method and found that, while the
nonincremental scheme is stable for equal-order elements (and sufficiently large time steps),
elements fulfilling the inf–sup condition is required to make the incremental scheme stable.

The other case we examine is the same time method withH2 = C−1 and H1 =
(6/11)δt M−1

L (case 2). This choice is equivalent to what is called the Yosida method in
Quarteroniet al. [14] and changes the discrete continuity equation, while the momentum
equation remains unaltered. Writing the equations with incremental pressure we get

1. Cũn+1 = rn
u − Gσ l pn + bn+1

u ,

2.
6

11
δt DM−1

L Gδl pn+1 = Dũn+1+ bn+1
p , (20)

3. Cun+1 = Cũn+1− Gδl pn+1,

wherern
u andC are as for case 1.

8. NUMERICAL EXPERIMENTS

For the study of temporal convergence of the splitting error, we chose two test problems.
The first is a version of the “Kim–Moin problem” [9] that was used in [14], and the second
is lid-driven cavity flow.

The two dimensional Kim–Moin problem has the time-dependent solution

u1 = −cos(2πx) sin(2πy)e−8π2νt , (21)

u2 = sin(2πx) cos(2πy)e−8π2νt , (22)

p = −1

4
(cos(4πx)+ cos(4πy))e−16π2νt (23)

over the domainÄ = (0.25, 1.25)× (0.5, 1.5), t ∈ (0, 1]. Only the Dirichlet problem was
considered, and boundary valuesw are immediate from (21) and (23). Both interior and
boundary degrees of freedom were kept in the system, and the Dirichlet conditions are
enforced on the system before solving. No boundary conditions were set on the pressure,
except at one point (0.25; 0.5) wherep(t) = 0. The time stepδt was varied from 2−3 to
2−9 and we used a structured grid of 962 square elements: nine- and four-node Lagrangian
elements for the velocity and pressure, respectively, which is known as a low-order Taylor–
Hood element pair (cf. [15]).

An object-oriented computer program was implemented using the C++ library Diffpack
[10]. The main classes were a simulator class, which handled the time stepping, a velocity
class for steps one and three of the above procedures, and a pressure class for step two.
Gridding, finite-element assembly, matrix algebra, preconditioning, and solution of linear
equations were performed by routines from the library. All linear equations were solved
with the Krylov method “BiCGStab” [16], which can be used for nonsymmetric matrices.
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Incomplete LU factorization was used for the preconditioners. The convergence criterion
was‖r n‖/‖b‖ < 10−8, where the norm is the Cartesian norm,r n is the residual after thenth
iteration, andb is the righthand-side vector. The computationally most expensive operation
was the solution of the Poisson-like pressure equation; 50–74 iterations were needed to
satisfy the convergence criterion. Also, the computation ofDH1DT (DT = G) took several
minutes on our computer (Sun Sparc), but this product depends only on the grid and was
performed once in a preprocessing stage. When the system is large (small elements), forming
the productDH1DT is not feasible and one will have to use an iterative method combined
with a suitable preconditioner.

Errors were measured by the norms

‖eu‖ = max
n
‖un − u(nδt)‖L2(Ä), (24)

‖ep‖ = rms
n
‖pn − p(nδt)‖L2(Ä), (25)

where rmsn denotes the root mean square.
To examine the effect of the splitting error and the use of incremental pressure, we

employed the BDF scheme of Section 7, since this time integration has sufficiently high
order. We tried both case 1 and case 2 to see if there is any noticable difference between
modifying the momentum equation and modifying the continuity equation.

The plots that follow show velocity and pressure errors, Eqs. (24) and (25), as functions
of δt . A dotted, straight line is included in the left corners for reference on the convergence
order.

Figures 2, 3, and 4 refer to case 1, withl = 0, 1, 2. Both pressure and velocity errors are
close to the theoretical order of convergence. In Figs. 3 and 4, we see the effect of the spatial
error; the pressure error reaches its minimum at about 8.8× 10−5 and becomesO(1). Close
to 2.3× 10−6 the velocity error also reaches its minimum.

The only parameter that is varied in these plots is the order of the pressure incrementl .
Thus the three plots confirm that the splitting error is indeed proportional toδl pn+1.

In [11], Crank–Nicholson time integration with nonincremental algebraic splitting gives
second order for the velocity and first order for the pressure. It is stated that due to limita-
tions in the discrete representation of the continuous pressure equation, the discrete pressure

FIG. 2. Kim–Moin problem, case 1,l = 0.
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FIG. 3. Kim–Moin problem, case 1,l = 1.

will always be first-order accurate. The present study demonstrates that this is overcome by
the use of incremental pressure. Third-order convergence of both velocity and pressure, as
shown in Fig. 4, was previously obtained in [1]. In that study, second-order pressure incre-
ment and BDF time-integration are used with a projection method (modifies the continuous
PDE). Spatial discretization is handled using a spectral method, and spatial errors are at the
level of the machine precision.

Figures 5, 6, and 7 refer to case 2 for the Kim–Moin flow. With nonincremental pressure,
the convergence orders of velocity and pressure are close to 1.8 and 1.3, respectively.
With l = 1 (i.e., first-order pressure increment), we observe a convergence order of 2.8
for velocity (regarding only the first five values ofδt) and a convergence order of 2.4 for
pressure (first three values ofδt). With l = 2 (see Fig. 7), the steepest parts of the graphs
indicate the orders 3.8 and 3.4.

Compared to case 1, the velocity in case 2 converges faster and has higher accuracy for
all values ofl .

FIG. 4. Kim–Moin problem, case 1,l = 2.
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FIG. 5. Kim–Moin problem, case 2,l = 0.

FIG. 6. Kim–Moin problem, case 2,l = 1.

FIG. 7. Kim–Moin problem, case 2,l = 2.
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FIG. 8. Cavity flow, case 1,l = 2.

In the two-dimensional cavity problem, we used a unit box in which the lid started at
rest and then was accelerated. This was done both to get a time-dependent problem and
to avoid any possible problems with the inital values. The velocity function of the lid
was

u1 = (t/τ)4

1+ (t/τ)4 ,

whereτ = 0.6 andt ∈ (0, 1]. Taylor–Hood elements (642 square) were used for discretizing
this problem in space. A reference solution was obtained by running the same numerical
method with a much smaller time step,δt = 5× 10−4.

The splitting errors for case 1 and case 2 withl = 2 are plotted in Figs. 8 and 9. Again, the
convergence rates for both pressure and velocity have the same order as the time-integration
scheme,O(δt3). For this problem, however, case 1 gives higher accuracy than case 2. The
same was observed forl = 1 andl = 0.

FIG. 9. Cavity flow, case 2,l = 2.
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9. SUMMARY

Solving for incremental pressure, or correcting splitting errors, is a viable way to achieve
higher order algebraic splitting methods. The Kim–Moin problem and the lid-driven cavity
were used to test the effect of increasing the order of the pressure increment. It is clear from
the analysis and the numerical experiments that the splitting error (in time) is proportional
to the pressure variable. Use of pressure increments are thus an alternative—and cheaper
in terms of computational work—to the use of high-order matrix factorizations (see [11]).

Two special cases of approximate factorizations were examined. They correspond to
methods previously proposed by Perot [11] and Quarteroniet al. [14]. The method of the
latter, which does not enforce mass conservation, has a somewhat faster time convergence
but is not necessarily the most accurate on a specific range of time steps; this is indicated
by both analysis and numerical experiments.
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